Flow of Gas Mixtures through Micro Channel

نویسندگان

  • Toru Hyakutake
  • Kyoji Yamamoto
  • Hideki Takeuchi
چکیده

To investigate flow of gas mixtures through micro channel in detail, the tangential momentum accommodation coefficients of each species for gaseous mixtures were determined by analyzing the Couette flow problem of a slightly rarefied gas between two walls. The molecular dynamics (MD) method for the interaction of gas molecule with the wall surface is combined with the DSMC method for the motion of gas molecules. These obtained accommodation coefficients were applied for the flow of gas mixture through the micro channel as the Maxwell-type boundary conditions, and influence of the surface with adsorbates and the gas concentration on the flow rate of the micro channel was examined. The simulation results show that the velocity slip and the accommodation coefficients for gas mixtures differ from that for a single gas. The differences of the molar concentration of gas mixtures and wall characteristics lead to variations of the flow rate in the channel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calculation of Friction Coefficient and Analysis of Fluid Flow in a Stepped Micro-Channel for Wide Range of Knudsen Number Using Lattice Boltzmann (MRT) Method

  Micro scale gas flows has attracted significant research interest in the last two decades. In this research, the fluid flow of gases in the stepped micro-channel at a wide range of Knudsen number has been analyzed with using the Lattice Boltzmann (MRT) method. In the model, a modified second-order slip boundary condition and a Bosanquet-type effective viscosity are used to consider the veloci...

متن کامل

Numerical Simulation of Turbulent Subsonic Compressible Flow through Rectangular Microchannel

In this study, turbulent compressible gas flow in a rectangular micro-channel is numerically investigated. The gas flow assumed to be in the subsonic regime up to Mach number about 0.7. Five low and high Reynolds number RANS turbulence models are used for modeling the turbulent flow. Two types of mesh are generated depending on the employed turbulence model. The computations are performed for R...

متن کامل

Gas Mixing Simulation in a T-Shape Micro Channel Using The DSMC Method

Gas mixing in a T-shape micro mixer has been simulated using the Direct Simulation Monte Carlo (DSMC) method. It is considered that the adequate mixing occurs when the mass composition of the species, CO or N2, deviates below 1 % from their equilibrium composition. The mixing coefficient is defined as the ratio of the mixing length to the main channel’s height. As the inlet Kn increases, while ...

متن کامل

Investigating Fluid Mixing in Electro-Osmotic Flow Through Passive Micro-Mixers Having Square and Triangle Barriers

Objective: In this article, a numerical study is conducted on mixing of two fluids in the liquid phase with two different concentrations of a chemical species in the electro-osmotic flow. Methods: The base liquid is an electrolyte which flows in a two-dimensional micro-channel having electrically charged walls. Lorentz electric force, which is used as stimulating flow factor, is created by appl...

متن کامل

Investigating Fluid Mixing in Electro-Osmotic Flow Through Passive Micro-Mixers Having Square and Triangle Barriers

Objective: In this article, a numerical study is conducted on mixing of two fluids in the liquid phase with two different concentrations of a chemical species in the electro-osmotic flow. Methods: The base liquid is an electrolyte which flows in a two-dimensional micro-channel having electrically charged walls. Lorentz electric force, which is used as stimulating flow factor, is created by appl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006